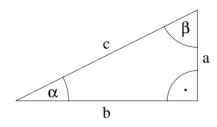
Formelsammlung Messtechnik V 2.3 s

MICHAEL OTT
MARKUS HANNEMANN

26. Oktober 1999

Inhaltsverzeichnis

1	Mat	hematische Grundlagen	1								
	1.1	Winkelfunktionen	1								
	1.2	Binomische Formeln	1								
	1.3	Logarithmusfunktionen	1								
2	Gru	rundlagen des elektrotechnischen Rechnens 2									
	2.1	Ohmsches Gesetz	2								
	2.2	Spezifischer Widerstand und Leitfähigkeit	2								
	2.3	Widerstand und Temperatur	2								
	2.4	Reihenschaltung von Widerständen	2								
	2.5	Parallelschaltung von Widerständen	3								
	2.6	Induktiver Widerstand	3								
	2.7	Kapazitiver Widerstand	3								
	2.8	Tiefpass	3								
	2.9	Hochpass	3								
3	Periodische Spannungen und Ströme 4										
	3.1	Linearer Mittelwert	4								
		3.1.1 Bei nicht linearen Spannungsformen	4								
		3.1.2 Bei linearen Spannungsformen	4								
		3.1.3 Beispiel zum Messbereich DC	4								
	3.2	Effektivwert der Wechselspannung	5								
		3.2.1 Bei nicht linearen Spannungsformen	5								
		3.2.2 Bei linearen Spannungsformen	5								
		3.2.3 Beispiel zum Messbereich $U_{True\ AC}$	5								
	3.3	Effektivwert	6								
		3.3.1 Bei nicht linearen Spannungsformen	6								
		3.3.2 Bei linearen Spannungsformen	6								
		3.3.3 Addition von U_{DC} und $U_{True\ AC}$	6								
		3.3.4 Beispiel zu U_{eff}	6								
	3.4	Angezeigter Wert	7								
		3.4.1 Beispiel zu U_{Anz}	7								
	3.5	Formfaktor	8								
	3.6	Crestfaktor	8								
4	Dän	npfung und Verstärkung	9								
	4.1	Dämpfer bzw. Verstärker	9								
	4.2	Dämpfung- und Verstärkungsfaktoren	9								
	4.3		10								
	4.4	Pegel	10								
			10								
		4.4.2 Relativer Pegel	11								
		4.4.3 Pegelreihe	1 1								


©M+M i

	4.5	Fehlan	passung	11			
5	Mes	sen mit	en mit Osziloskopen				
	5.1	Spannu	ingsmessung	12			
	5.2	Stromn	nessung	12			
	5.3	Freque	nzmessung	13			
	5.4	Phasen	lage	13			
	5.5	Zeitme	essung	14			
	5.6	Phasen	verschiebung mittels Lissajousfiguren	14			
	5.7	Lissajo	ous Figuren	15			
		5.7.1	Frequenz _y = Frequenz _x ohne Phasenverschiebung	15			
		5.7.2	Frequenz _y = 2 fache Frequenz _x ohne Phasenverschiebung	15			
		5.7.3	Frequenz _y = 4 fache Frequenz _x ohne Phasenverschiebung	15			
		5.7.4	Frequenz _y = Frequenz _x mit 30° Phasenverschiebung	16			
		5.7.5	Frequenz _y = Frequenz _x mit 60° Phasenverschiebung	16			
		5.7.6	Frequenz _y = Frequenz _x mit 90° Phasenverschiebung	16			
		5.7.7	Frequenz _y = Frequenz _x mit 120° Phasenverschiebung	17			
		5.7.8	Frequenz _y = Frequenz _x mit 150° Phasenverschiebung	17			
		5.7.9	Frequenz _y = Frequenz _x mit 180° Phasenverschiebung	17			
		5.7.10	Wie geht dem (Graph nach Lissaiou)	18			

©M+M ii

1 Mathematische Grundlagen

1.1 Winkelfunktionen

$$\sin \alpha = \frac{Gegenkathete}{Hypotenuse} = \frac{a}{c}$$

$$\cos \alpha = \frac{Ankathete}{Hypotenuse} = \frac{b}{c}$$

$$\tan \alpha = \frac{Gegenkathete}{Ankathete} = \frac{a}{b}$$

$$\cot \alpha = \frac{Ankathete}{Gegenkathete} = \frac{b}{a}$$

$$c^2 = a^2 + b^2$$

$$\sin \beta = \frac{Gegenkathete}{Hypotenuse} = \frac{b}{c}$$

$$\cos \beta = \frac{Ankathete}{Hypotenuse} = \frac{a}{c}$$

$$\tan \beta = \frac{Gegenkathete}{Ankathete} = \frac{b}{a}$$

$$\cot \beta = \frac{Ankathete}{Gegenkathete} = \frac{a}{b}$$

Lehrsatz des Pythagoras:

Das Quadrat über der Hypotenuse ist gleich der

Summe der beiden Kathedenquadrate.

1.2 Binomische Formeln

$$(a+b)^2=a^2+2ab+b^2$$
 erste Binomische Formel
$$(a-b)^2=a^2-2ab+b^2$$
 zweite Binomische Formel
$$(a+b)\cdot(a-b)=a^2-b^2$$
 dritte Binomische Formel

1.3 Logarithmusfunktionen

$$\log a \cdot b = \log a + \log b$$

$$\log \frac{a}{b} = \log a - \log b$$

$$\log a^n = n \cdot \log a$$

$$\log \sqrt[b]{a^n} = \frac{n}{b} \cdot \log a = \log a^{\frac{n}{b}}$$

$$a^x = b \quad \Rightarrow \quad \log_a b = x$$

$$a^{\frac{x_1}{x_2}} = \frac{b_1}{b_2} \quad \Rightarrow \quad x_1 = x_2 \cdot \log_a \frac{b_1}{b_2}$$

- -

2 Grundlagen des elektrotechnischen Rechnens

2.1 Ohmsches Gesetz

$$I=rac{U}{R}$$

$$I[A]= ext{Stromstärke}$$

$$U[V]= ext{Spannung}$$

$$R[\Omega]= ext{Widerstand}$$

$$G = \frac{1}{R}$$
 $G[S] =$ Leitwert

2.2 Spezifischer Widerstand und Leitfähigkeit

$$\rho = \frac{1}{\kappa}$$

$$\rho \left[\frac{\Omega \cdot mm^2}{m} \right] = \text{spezifischer Widerstand}$$

$$\kappa \left[\frac{m}{\Omega \cdot mm^2} \right] = \text{Leitf\"{a}higkeit}$$

$$R = \frac{\rho \cdot l}{A}$$

$$l[m] = \text{Leitungsl\"{a}nge}$$

2.3 Widerstand und Temperatur

$$\triangle R = \alpha \cdot R_1 \cdot \triangle \vartheta$$

$$\triangle R[\Omega] = \text{Widerstands"anderung}$$

$$\alpha \left[\frac{1}{K}\right] = \text{Temperatur"koeffizient (Kupfer } \alpha = \frac{1}{235K + \vartheta_1(25^\circ)})$$

$$\triangle \vartheta[K] = \text{Temperatur"anderung}$$

$$R_1[\Omega] = \text{Kaltwiderstand}$$

$$R_2 = R_1 \cdot (1 + \alpha \cdot \triangle \vartheta)$$

$$R_2[\Omega] = \text{Warmwiderstand}$$

 $A[mm^2]$ = Leitungsquerschnitt

2.4 Reihenschaltung von Widerständen

$$U_{ges} = \sum_{i=1}^{n} U_i$$
 $U_{ges}[V] = \text{Gesamtspannung}$ $R_{ges} = \sum_{i=1}^{n} R_i$ $R_{ges}[\Omega] = \text{Gesamtwiderstand}$ $\frac{U_1}{U_2} = \frac{R_1}{R_2}$ Die Spannungen verhalten sich wie die dazugehörigen Widerstände $I_{ges} = I_i$ $I_{ges}[A] = \text{Der Strom ist } \vec{\text{uberall gleichgroß}}$

 \bigcirc M+M

2.5 Parallelschaltung von Widerständen

$$I_{ges} = \sum_{i=1}^{n} I_i$$

$$\frac{1}{R_{ges}} = \sum_{i=1}^{n} \frac{1}{R_i}$$

$$\frac{I_1}{I_2} = \frac{R_2}{R_1}$$

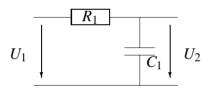
2.6 Induktiver Widerstand

$$X_L = 2 \cdot \pi \cdot f \cdot L$$

 $X_L[\Omega]$ = Induktiver Widerstand

f[Hz] =Frequenz

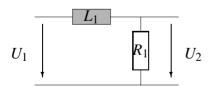
L[H] = Induktivität


2.7 Kapazitiver Widerstand

$$X_C = \frac{1}{2 \cdot \pi \cdot f \cdot C}$$

 $X_C[\Omega] =$ Kapazitiver Widerstand

C[F] = Kapazität


2.8 Tiefpass

$$\frac{U_1}{U_2} = \frac{\sqrt{R^2 + X_C^2}}{X_C}$$

Spannungsverhältnis = Widerstandsverhältnis

2.9 Hochpass

$$\frac{U_1}{U_2} = \frac{\sqrt{X_L^2 \cdot R^2}}{R^2}$$

 $Spannungs verh\"{a}ltn is = Wider stands verh\"{a}ltn is$

3 Periodische Spannungen und Ströme

3.1 Linearer Mittelwert

Meßbereich DC

3.1.1 Bei nicht linearen Spannungsformen

$$\overline{U} = \frac{1}{T} \cdot \int_{0}^{T} u(t) \cdot dt$$

$$U_{Drehspule},$$

$$U_{DC},$$

$$U_{AV},$$

$$\overline{U} = \text{arithm. Mittelwert}$$

$$(Fläche unter der Kurve dividiert durch$$

$$Periodendauer (positiv bzw. negativ))$$

$$\triangle t,$$

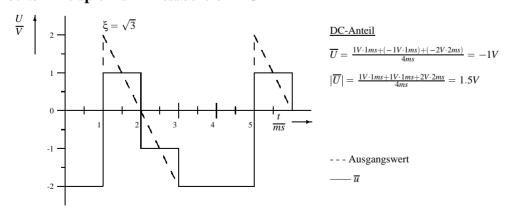
$$dt = \text{Teil Zeitabschnitt}$$

$$T = \text{Gesamt Zeitabschnitt}$$

$$u(t) = \text{Spannung im Teil Zeitabschnitt}$$

3.1.2 Bei linearen Spannungsformen

Mittelwert:


$$\overline{U} = \frac{1}{T} \cdot \sum_{i=1}^{n} (\overline{u}_i \cdot \triangle t_i)$$

Betrag des Mittelwertes (Gleichrichtwert Wechsel- + Gleichspannung):

$$|\overline{U}| = \frac{1}{T} \cdot \sum_{i=1}^{n} |\overline{u}_i \cdot \triangle t_i|$$

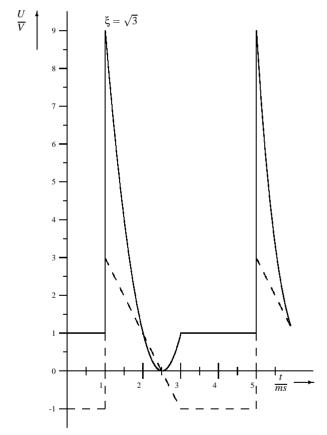
 $\bullet\,$ Mittelwert bei reiner Wechselspannung ist immer $\overline{U}=0$

3.1.3 Beispiel zum Messbereich DC

 \bigcirc M+M

3.2 Effektivwert der Wechselspannung

3.2.1 Bei nicht linearen Spannungsformen


$$U_{True\ AC} = \sqrt{\frac{1}{T} \int\limits_{0}^{T} (u(t) - \overline{U})^2 \cdot dt}$$

 $U_{True\ AC}$ = Effektivwert der Wechselspannung \hat{u}_i = Spitzenwert im Teil Zeitabschnitt

3.2.2 Bei linearen Spannungsformen

$$U_{True\ AC} = \sqrt{\frac{1}{T} \cdot \sum_{i=1}^{n} \left(\left(\frac{\hat{u}_i - \overline{U}}{\xi} \right)^2 \cdot \triangle t_i \right)}$$

3.2.3 Beispiel zum Messbereich $U_{True\ AC}$

 $U_{True\ AC}$

$$U_{True\ AC} = \sqrt{rac{2ms\cdot(1V)^2 + 1.5ms\cdot\left(rac{3V}{\sqrt{3}}
ight)^2 + 0.5ms\cdot\left(rac{1V}{\sqrt{3}}
ight)^2}{4ms}}$$

 $U_{True\ AC} = 1.291V$

--- Ausgangswert ohne DC-Anteil
—— *U*_{True AC}

3.3 Effektivwert

Meßbereich $U_{True\ AC+DC}$

3.3.1 Bei nicht linearen Spannungsformen

$$U_{True\ AC+DC} = \sqrt{\frac{1}{T}} \cdot \int\limits_{0}^{T} (u(t))^{2} \cdot dt$$

$$U_{Dreheisen},$$

$$U,$$

$$U_{eff},$$

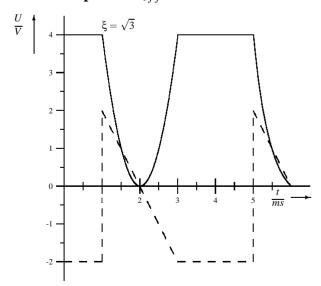
$$U_{RMS},$$

$$U_{True\ AC+DC} = \text{Wechsel-} + \text{Gleichspannungsanteil}$$

$$u = \frac{\hat{u}}{\xi}$$

$$u_{i},$$

$$u(t) = \text{effektivwert zu diesem Zeitpunkt}$$


3.3.2 Bei linearen Spannungsformen

$$U_{True\ AC+DC} = \sqrt{\frac{1}{T} \cdot \sum_{i=1}^{n} (u_i^2 \cdot \triangle t_i)}$$

3.3.3 Addition von U_{DC} und $U_{True\ AC}$

$$U_{True\ AC+DC} = \sqrt{U_{DC}^2 + U_{True\ AC}^2}$$
 $U = \sqrt{U_{=}^2 + U_{\sim}^2}$

3.3.4 Beispiel zu U_{eff}

Effektivwert

$$U_{eff} = \sqrt{\frac{2ms \cdot (2V)^2 + 1ms \cdot \left(\frac{2V}{\sqrt{3}}\right)^2 + 1ms \cdot \left(\frac{2V}{\sqrt{3}}\right)^2}{4ms}} = 1.633V$$

$$U_{eff} = \sqrt{(-1V)^2 + (1.291V)^2} = 1.633V$$

--- Ausgangssignal $---- U_{eff}$

3.4 Angezeigter Wert

Meßbereich AC, Anzeige bei handelsüblichen Meßgeräten

 $u - \overline{U}$

2. Wechselspannung gleichrichten
$$|u|$$

 $u - \overline{U}$

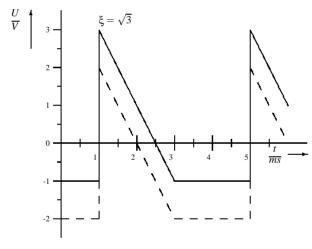
3. Mittelwert bilden
$$|\overline{U_{\sim}}|$$

u — \overline{II}

4. Mit Formfaktor multiplizieren
$$U_{Anz}$$

 $\overline{|u-\overline{U}|}\cdot 1,11$

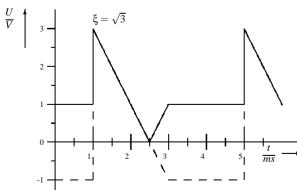
$$|\overline{U_{\sim}}| = \frac{1}{T} \cdot \sum_{i=1}^{n} (\overline{|\hat{u}_i - \overline{U}|} \cdot \triangle t_i)$$


 $|\overline{U_{\sim}}|$ = Gleichrichtwert der reinen Wechselspannung

$$U_{Anz}=|\overline{U_{\sim}}|\cdot F_{\sim}$$

$$F_{\sim} = 1,11$$

 U_{Anz} = Angezeigter Wert


3.4.1 Beispiel zu U_{Anz}

DC-Anteil entfernen

- - - Ausgangswert

----- ohne DC-Anteil

DC-Anteil

$$|\overline{U}| = \frac{2ms \ 1V + 1.5ms \ \frac{3V}{2} + 0.5ms \ \frac{1V}{2}}{4ms} = 1.125V$$

 $U_{Anz} = |\overline{U}| \cdot F_{\sim} = 1.25V$ $F_{\sim} = 1.111$

- - - Ausgangswert ohne DC-Anteil

 $---|\overline{u}|$

 $\bigcirc M+M$

3.5 Formfaktor

Für jede Kurvenform einer Spannung gibt es einen Formfaktor, mit diesem muß im Meßgerät der Gleichrichtwert multipliziert werden um den Effektivwert richtig anzeigen zu können. In einem Handelsüblichen Sinus-Vollwellen korigierten Meßgerät ist nur der Formfaktor für reine Sinusspannung integriert ($F_{\sim}=1,11$).

$$F = \frac{U_{eff}}{|\overline{U}|} = \frac{Effektivwert}{Gleichrichtwert} \qquad \qquad F = \text{Formfaktor}$$
 Wenn $U_{eff} = U_{True\ AC+DC}$ dann $|\overline{U}|$ der Gleichrichtwert der Wechsel- + Gleichspannung Wenn $U_{eff} = U_{True\ AC}$ dann $|\overline{U}| = |\overline{U}_{\sim}|$ der Gleichrichtwert der reinen Wechselspannung

3.6 Crestfaktor

Der Crestfaktor gibt an, um das wievielfache der Spitzenwert größer sein darf als der Effektivwert. Wird er überschritten kann das Meßgerät nicht mehr zuverlässig arbeiten.

$$F_{Crest} = \frac{\hat{u}}{U_{eff}} = \frac{Spitzenwert}{Effektivwert}$$
 ξ , $F_{Crest} = \text{Crestfaktor}$ $\hat{u} = \text{Spitzenwert}$

Wenn $U_{eff} = U_{True\ AC+DC}$ dann \hat{u} der Spitzenwert der Wechsel- + Gleichspannung Wenn $U_{eff} = U_{True\ AC}$ dann \hat{u} der Spitzenwert der reinen Wechselspannung

4 Dämpfung und Verstärkung

4.1 Dämpfer bzw. Verstärker

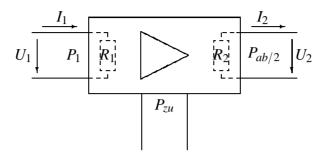


Abbildung 1: Verstärker- bzw. Dämpfungsglied

$$\eta = \frac{P_{ab}}{Pzu}$$

 $\eta = Wirkungsgrad$

4.2 Dämpfung- und Verstärkungsfaktoren

 $D = \frac{S_1}{S_2}$

D = Dämpfungsfaktor

 $S_1 = \text{Eingangsgröße}$

 $S_2 = Ausgangasgröße$

$$V = \frac{1}{D}$$

V = Verstärkungsfaktor

4.3 Dämpfungs- und Verstärkungsmaße

1.00

1,12

1,41

Tabelle 1: Zusammenhang zwischen Dämpfungsfaktoren und Dämpfungsmaßen

2,00

3,16

10,0

31,6

100

4.4 Pegel

4.4.1 Absoluter Pegel

Der Pegel 0dB liegt bei der Leistung $P_0 = 1mW$ oder der Spannung $U_0 = 775mV$ vor. $(I = 1, 29mA, R_L = 600\Omega)$

$$L_{U_{abs}}=20\lg rac{U}{U_0}$$
 $L_{U_{abs}}[dBm]=$ Absoluter Spannungspegel $U_0[V]=$ Bezugsspannung

$$L_{P_{abs}}=10\lg rac{P}{P_0}$$
 $L_{P_{abs}}[dBm]=$ Absoluter Leistungspegel $P_0[W]=$ Bezugsleistung

(c)M+M

Bezugswerte	Antennentechnik	Fernmeldetechnik	
R_L	75,00	600	Ω
U_0	$1.10^{(-6)}$	$775 \cdot 10^{(-3)}$	V
I_0	$13,33 \cdot 10^{(-9)}$	$1,29 \cdot 10^{(-3)}$	A
$\overline{P_0}$	$13,33 \cdot 10^{(-15)}$	$1,00 \cdot 10^{(-3)}$	W

Tabelle 2: Bezugswerte für relative Pegel

4.4.2 Relativer Pegel

Für Bezugspunkt U_0 aus Tabelle:

$$L_{U_{rel}} = 20 \lg \frac{U}{U_0} dB \mu V$$

 $L_{U_{rel}}$ = Relativer Spannungspegel

4.4.3 Pegelreihe

Beispiel Pegelplan:

$$a_{ges} = a_1 - v_1 + a_2 - v_2 + a_3$$

$$D_{ges} = D_1 \cdot \frac{1}{V_1} \cdot D_2 \cdot \frac{1}{V_2} \cdot D_3$$

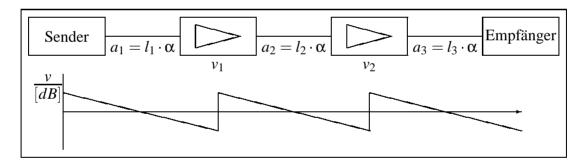
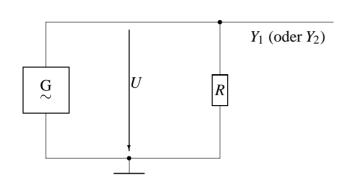
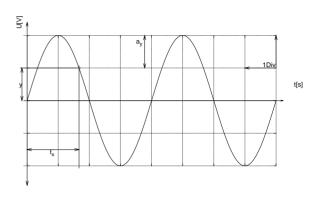


Abbildung 2: Pegelplan

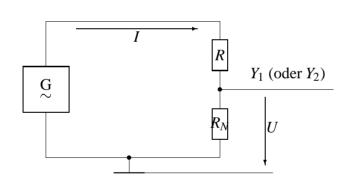

4.5 Fehlanpassung

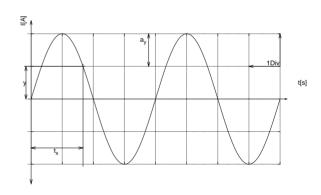

Fehlanpassung muss bei $R_2 \neq R_{LAST}$ berücksichtigt werden.

$$a_{UFehl} = -\left(6dB + 20\lg \frac{R_{LAST}}{R_2 + R_{LAST}}\right)$$
 $a_{UFehl} =$ Fehleranteil der Dämpfung $75\Omega \rightarrow 600\Omega \Rightarrow I \downarrow \Rightarrow U \uparrow \Rightarrow \text{Verstärkung}$ $600\Omega \rightarrow 75\Omega \Rightarrow I \uparrow \Rightarrow U \downarrow \Rightarrow \text{Dämpfung}$

5 Messen mit Osziloskopen

5.1 Spannungsmessung





$$u(t_x) = a_y \cdot y(t_x)$$

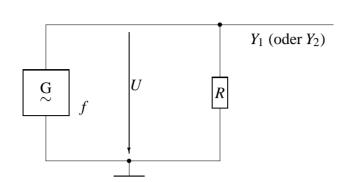
 $u(t_x)[V]$ = Spannung in abhängigkeit der Zeit $a_y\left[\frac{V}{Div}\right]$ = Ablenkungskoeffizient in y-Richtung $y(t_x)[Div]$ = Auslenkung in abhängigkeit der Zeit

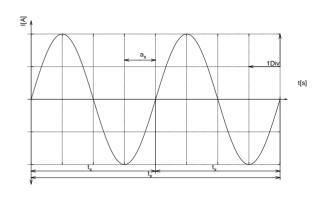
5.2 Strommessung

$$i(t_x) = \frac{u(t_x)}{R_N}$$

 $i(t_x)[A] =$ Strom in abhängigkeit der Zeit

 $R_N[\Omega] = Normalwiderstand$


 $R > R_N$


 $Z[\Omega]$ = Scheinwiderstand

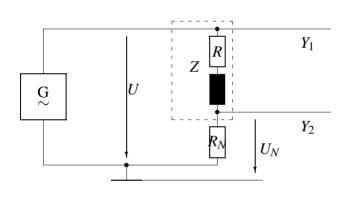
 $R_M[\Omega]$ = Innenwiderstand Osziloskop

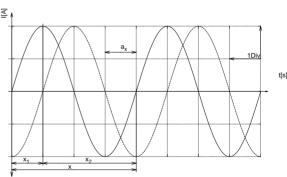
 $\bigcirc M+M$

Frequenzmessung 5.3

$$t_M = x \cdot a_x$$

$$t_M[s]$$
 = Periodendauer


$$a_{m}[\frac{s}{s}] = \text{Teitkoeffizient in x-Richt}$$


$$a_x \left[\frac{s}{Div} \right]$$
 = Zeitkoeffizient in x-Richtung $x[Div]$ = Auslenkung in abhängikeit der Spannung

$$f = \frac{1}{t_M}$$

$$f[Hz] =$$
Frequenz

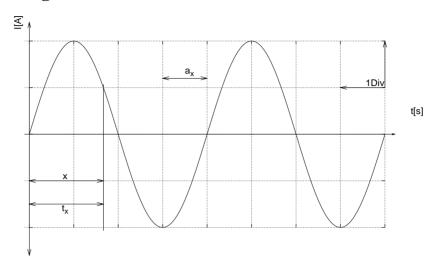
Phasenlage

$$\frac{x_2}{x} = \frac{\triangle t}{T}$$

 x_2 = Abstand in Teilen

x = Abstand in Perioden

 $\triangle t$ = Zeitdifferenz

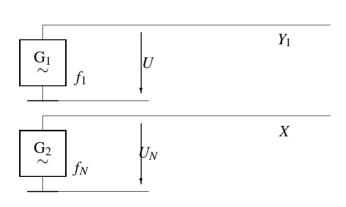

T =Periodendauer

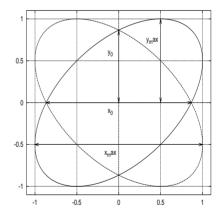
$$\frac{\triangle t}{T} = \frac{\varphi}{360^\circ}$$

$$\phi$$
 = Phasenverschiebungswinkel

$$\varphi = \frac{x_2}{x} \cdot 360^{\circ}$$

5.5 Zeitmessung




$$t_x = a_x \cdot x$$

$$u(t) = \hat{u} \cdot \sin(2 \cdot \pi \cdot f \cdot t + \varphi_u)$$

$$i(t) = \hat{i} \cdot \sin(\omega \cdot t + \varphi_i)$$

5.6 Phasenverschiebung mittels Lissajousfiguren

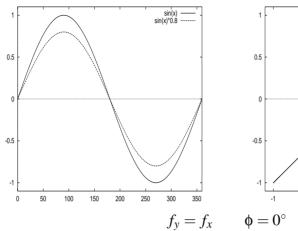
$$\varphi = \pm \arcsin \frac{y_0}{\hat{y}_{max}}$$

 ϕ = Phasenverschiebungswinkel

$$\varphi = \pm \arcsin \frac{x_0}{\hat{x}_{max}}$$

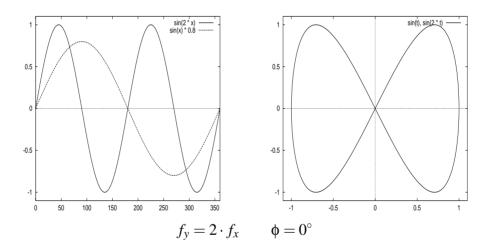
Diese Formeln gelten wenn sich die Figuren nach links neigen (+180°)

$$\varphi = \pm \arcsin \frac{y_0}{\hat{y}_{max}} + 180^{\circ}$$

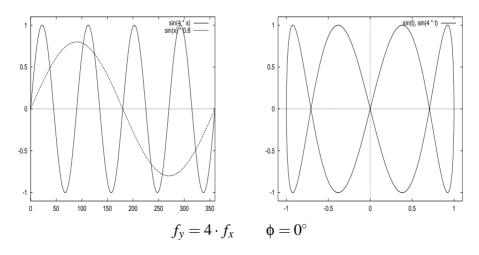

$$\varphi = \pm \arcsin \frac{x_0}{\hat{x}_{max}} + 180^{\circ}$$

 $\bigcirc M+M$

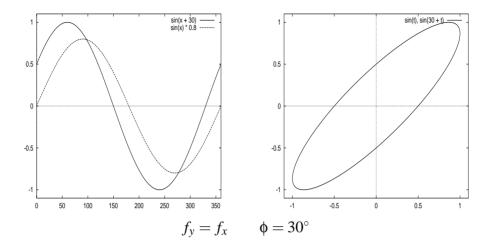
sin(t), sin(t)

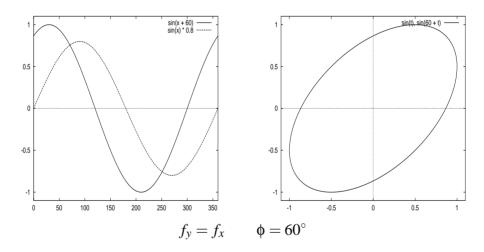

5.7 Lissajous Figuren

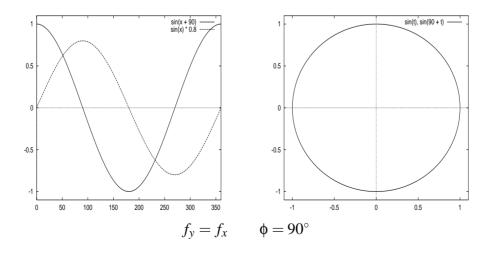
5.7.1 Frequenz_y = Frequenz_x ohne Phasenverschiebung

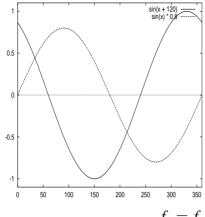


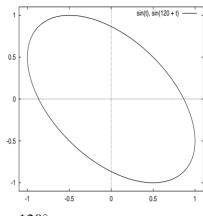
fy fx + 0


5.7.2 Frequenz_y = 2 fache Frequenz_x ohne Phasenverschiebung


5.7.3 Frequenz_y = 4 fache Frequenz_x ohne Phasenverschiebung

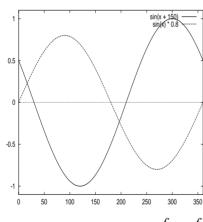

5.7.4 Frequenz_y = Frequenz_x mit 30° Phasenverschiebung

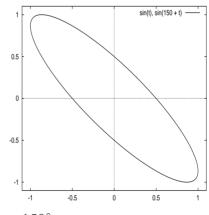

5.7.5 Frequenz_y = Frequenz_x mit 60° Phasenverschiebung



5.7.6 Frequenz_y = Frequenz_x mit 90° Phasenverschiebung

Frequenz_x = **Frequenz**_x mit 120° **Phasenverschiebung**

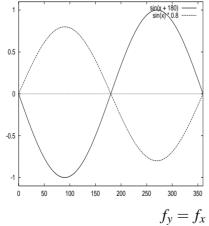


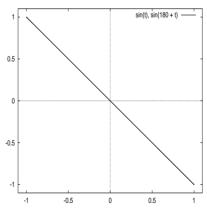


 $f_y = f_x$

 $\phi = 120^{\circ}$

5.7.8 Frequenz_y = Frequenz_x mit 150° Phasenverschiebung

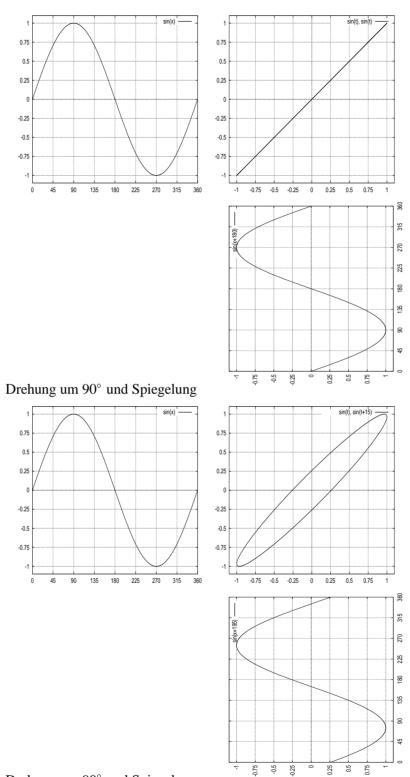




 $f_y = f_x$

 $\phi = 150^{\circ}$

5.7.9 Frequenz_y = Frequenz_x mit 180° Phasenverschiebung



 $\phi = 180^{\circ}$

 $\bigcirc M + M$ 17

5.7.10 Wie geht dem (Graph nach Lissajou)

Drehung um 90° und Spiegelung